

Implementation of Transmission Lines Using

Generalized Circuit Blocks

Introduction

Transmission lines are regularly used to model the

impedance spectra of porous systems. As described in

our Transmission Lines application note, distributed

elements can be described using these components.

Here we will describe the computational aspects of EIS

modeling using transmission lines. We assume basic

knowledge of transmission lines as covered in our

Transmission Lines application note and the information

covered in the User Defined Components technical

note.

In general, we refer to the circuit blocks that make up

the transmission lines as subcomponents. We use χ
1
, χ2,

ζ, ZA and ZB to denote the subcomponents themselves

and their impedances. The symbol “||” indicates a

parallel combination.

Three transmission line models shown in Figure 1 are

available in Gamry’s Echem Analyst software. These

were developed to model diffusion and recombination

kinetics by Juan Bisquert. The theory and the

applications to dye-sensitized solar cells are explained in

a series of papers
1

.

As we explain later, the “Bisquert Short” (BTS) and the

“Bisquert Open” (BTO) components are available for

use in either the simplex algorithm or Levenberg-

Marquardt algorithm. The “Unified” (UTL) component,

on the other hand, is only available for the simplex

algorithm because of complications with calculation of

the derivative. Therefore we separate our discussion into

two parts, first covering BTS and BTO, and second

concerning UTL. Each section starts with the

mathematical background of the components followed

by the software implementation. We then explain the

subcomponent calculators. Following this procedure,

1

 Bisquert, J. Phys. Chem. Chem. Phys., 2000, 2, 4185–

4192 ; Bisquert, J. J. Phys. Chem. B 2002, 106, 325–

333 ; Fabregat-Santiago, F., et al., Sol. Ener. Mat. & Sol.

Cells 2005, 87, 117–131.

any transmission line that can be expressed in one of the

forms shown in Figure 1 can be defined.

Figure 1. Three transmission-line equivalent-circuit

elements that are available in Echem Analyst.

Bisquert Short & Bisquert Open

Mathematical Considerations

The equations to calculate the impedance of the

transmission lines are

𝑍BTO = √𝜁 ∙ 𝜒 coth (𝐿 ∙ √
𝜒

𝜁
)

𝑍BTS = √𝜁 ∙ 𝜒 tanh (𝐿 ∙ √
𝜒

𝜁
) (1)

where χ = χ({P
i
}), ζ = ζ({P

i
}), i = 1,2…n and Z =

Z({P
i
}), i = 0,1,2…n.

For any transmission line, P
0
 is always be reserved for L, while P

1
, P

2
,…P

n
 are parameters of the subcomponents.

To be able to use the transmission lines in Levenberg-Marquardt type fits, we also need the derivative of Z with respect to

each P
i
. ∂Z/∂P

0
 is straightforward, because there is no L-dependence within χ or ζ:

𝜕𝑍BTO

𝜕𝑃0
= 𝜒 ∙ cosech2 (𝐿 ∙ √

𝜒

𝜁
)

𝜕𝑍BTS

𝜕𝑃0
= 𝜒 ∙ sech2 (𝐿 ∙ √

𝜒

𝜁
) (2)

For i = 1,2,…n, ∂Z/∂P
i
 have to be calculated using the chain rule. For any given i, you can write the full partial derivative

as:

𝜕𝑍

𝜕𝑃𝑖
=

𝜕𝑍

𝜕𝜒

𝜕𝜒

𝜕𝑃𝑖
+

𝜕𝑍

𝜕𝜁

𝜕𝜁

𝜕𝑃𝑖
+ ⋯, i = 1,2,…n (3)

You can calculate ∂Z/∂χ and ∂Z/∂ζ directly from Eq. (1):

𝜕𝑍BTO

𝜕𝜒
=

1

2
√

𝜁

𝜒
∙ coth (𝐿 ∙ √

𝜒

𝜁
) +

1

2
∙ 𝐿 ∙ cosech2 (𝐿 ∙ √

𝜒

𝜁
)

𝜕𝑍BTO

𝜕𝜁
=

1

2
√

𝜒

𝜁
∙ coth (𝐿 ∙ √

𝜒

𝜁
) −

1

2
∙ 𝐿 ∙

𝜒

𝜁
∙ cosech2 (𝐿 ∙ √

𝜒

𝜁
) (4)

𝜕𝑍BTS

𝜕𝜒
=

1

2
√

𝜁

𝜒
∙ tanh (𝐿 ∙ √

𝜒

𝜁
) +

1

2
∙ 𝐿 ∙ sech2 (𝐿 ∙ √

𝜒

𝜁
)

𝜕𝑍BTS

𝜕𝜁
=

1

2
√

𝜒

𝜁
∙ tanh (𝐿 ∙ √

𝜒

𝜁
) −

1

2
∙ 𝐿 ∙

𝜒

𝜁
∙ sech2 (𝐿 ∙ √

𝜒

𝜁
)

All that remains is calculation of ∂χ/∂P
i
 and ∂ζ/∂P

i
 for substituting into Eq. (3).

Computational Implementation

Equations (1), (2), and (4) are independent of the specific forms of χ and ζ. These are implemented in the functions

TransmissionTanhTLS and TransmissionCothTLO in GamryTransmissionLineUtilities and can be used with any

subcomponent.

Definitions of the parameters, the components, and the circuit-block calculators are in the project

GamryTransmissionLines. This project is put under ..\Extended Components\TransmissionLines
2

 during the installation.

The calculator functions CBisqTLS and CBisqTLO are simply calls into the utility functions that are described above.

Specific Implementation for χ ≡ r
m
, ζ ≡ r

k
||q

m

By default Bisquert Short and Bisquert Open are defined with χ ≡ r
m
, ζ ≡ r

k
||q

m
. Either component has five parameters (L,

r
m
, r

k
, y

m
, and a). The PARAMETER definitions of these are:

static PARAMETER L = {"L","","",false,0.0,true,0.0}; //n=0

static PARAMETER Rm = {"rm","ohm","ohm*cm^2",false,0.0,true,0.0}; //n=1

static PARAMETER Rk = {"rk","ohm","ohm*cm^2",false,0.0,true,0.0}; //n=2

static PARAMETER Ym = {"ym","S*s^a","S*s^a/cm^2",false,0.0,true,0.0}; //n=3

static PARAMETER a = {"a","","",true,1.0,true,0.0}; //n=4

The two component definitions using the above parameter definitions are:

ComponentLib[0]={"BisqTan", 5, CBisqTLS,{&L,&Rm,&Rk,&Ym,&a},IDB_BISQTAN,true};

ComponentLib[1]={"BisqCot", 5, CBisqTLO,{&L,&Rm,&Rk,&Ym,&a},IDB_BISQCOT,true};

2

 “..\ExtendedComponents” stands for “C:\ProgramData\Gamry Instruments\Echem Analyst\Extended Components” in Windows
®
 7, 8, and 8.1.

The first parameter in the list (P
0
) must always be L. The indexing for the rest is P

1
=R

m
, P

2
=R

k
, P

3
=Y

m
, P

4
=a. These indices

are the positions of these parameters in pParam, and the associated ∂Z/∂P
i
, in pdResultdP respectively.

These functions, like the CalcZ functions explained in the “User-defined Components” applications note, have three

parts. The first section, labeled “Bookkeeping,” is not strictly necessary, but it makes the code much more readable and

tracking of the parameters easier. The second part performs the necessary calculations for the impedance, and the third

part calculates the derivatives when necessary.

For a subcomponent with just a resistor, such as χ ≡ r
m
 defined above, this looks like:

static void chi_res(bool CalculateDerivatives,

 double const Frequency,

 double const * const pParam[],

 COMPLEX * pResult,

 COMPLEX pdResultdP[])

{

double Rm = *pParam[1]; //<Bookkeeping>

COMPLEX * dResultdRm = &pdResultdP[1];

 pResult->Re = Rm; //<Calculation of impedance>

 pResult->Im = 0.0;

 if(!(CalculateDerivatives==0)) //<Calculation of derivatives>

 {

 dResultdRm->Re = 1.0;

 dResultdRm->Im = 0.0;

 }

}

In the <Bookkeeping> part we get the parameter R
m
 using the pointer that was passed in with the pParam array position

1. This is because R
m
 was defined as P

1
 in the COMPONENT definition. Similarly we use the pointer from pdResultdP

array position 1 for the derivative with respect to R
m
. The parts <Calculation of impedance> and <Calculation of

derivatives> proceed the same way as any user-defined component.

For the subcomponent ζ, the math is somewhat more complicated. ζ has a parallel resistance and constant-phase

element combination (i.e., ζ ≡ r
k
||q

m
),. The impedance is

𝑍 = {𝑅𝑘
−1 + [

1

(𝑗𝜔)𝑎𝑌𝑚
]

−1

}

−1

After expanding and rationalizing,

𝑍 =

1
𝑅𝑘

+ 𝑌𝑚𝜔𝑎cos (𝑎
𝜋
2) − 𝑗 ∙ 𝑌𝑚𝜔𝑎sin (𝑎

𝜋
2)

[
1

𝑅𝑘
+ 𝑌𝑚𝜔𝑎cos (𝑎

𝜋
2) − 𝑗 ∙ 𝑌𝑚𝜔𝑎sin (𝑎

𝜋
2)]

2

+ [𝑌𝑚𝜔𝑎sin (𝑎
𝜋
2)]

2

We leave the derivatives as an exercise to the eager reader. The code then looks like:

static void zeta_cpe_res(bool CalculateDerivatives,

double const Frequency,

double const * const pParam[],

COMPLEX * pResult,

COMPLEX pdResultdP[])

{

 double Rk = *pParam[2]; //<Bookkeeping>

 double Ym = *pParam[3];

 double a = *pParam[4];

 COMPLEX * dResultdRk = &pdResultdP[2];

 COMPLEX * dResultdYm = &pdResultdP[3];

 COMPLEX * dResultda = &pdResultdP[4];

 COMPLEX Complexdenom,divisor;

 double denom;

 double Omega = 2 * PI * Frequency; //<Calculation of impedance>

 double term1 = 1.0/Rk + Ym * pow(Omega,a)*cos(a*PI/2.0);

 double term2 = sin(a*PI/2.0)*Yo3*pow(Omega,a);

 denom = pow(term1,2.0)+pow(term2,2.0);

 pResult->Re = term1/denom;

 pResult->Im = -1.0*term2/denom;

 if(!(CalculateDerivatives==0)) //<Calculation of derivatives>

 {

 Complexdenom.Re = pResult->Re*pResult->Re - pResult->Im*pResult->Im;

 Complexdenom.Im = pResult->Im*pResult->Re + pResult->Re*pResult->Im;

 dResultdRk->Re = complexdenom.Re/(Rk*Rk);

 dResultdRk->Im = complexdenom.Im/(Rk*Rk);

 divisor.Re = -1*pow(Omega,a)*cos(PI*a/2);

 divisor.Im = -1*pow(Omega,a)*sin(PI*a/2);

 dResultdYm.Re=complexdenom.Re*divisor.Re – complexdenom.Im*divisor.Im;

 dResultdYm.Im=complexdenom.Im*divisor.Re + complexdenom.Re*divisor.Im;

 divisor.Re = Ym * log(Omega);

 divisor.Im = Ym * PI/2;

 dResultda.Re = dResultdYm->Re*divisor.Re – dResultdYm->Im*divisor.Im;

 dResultda.Im = dResultdYm->Im*divisor.Re + dResultdYm->Re*divisor.Im;

 }

}

Using these blocks, then, the CalcZ functions CBisqTLS take the form:

static void CBisqTLS(bool CalculateDerivatives,

double const Frequency,

double const * const pParam[],

COMPLEX * const pZ,

COMPLEX * const pdZdP[])

{

 TransmissionTanhTLS(CalculateDerivatives,

Frequency,

pParam,

pZ,

pdZdP,

*chi_res, // chi calculator defined above

*zeta_cpe_res); // zeta calculator defined above

}

CBisqTLO operates similarly.

Unified (UTL)

As you would expect, the equation governing the impedance of Unified is much more complex:

𝑧 =
𝐿𝜆𝜒1𝜒2(𝜒1 + 𝜒2)𝑆𝜆 + 𝜒1(𝜆𝜒1𝑆𝜆 + 𝐿𝜒2𝐶𝜆)𝑍𝐴 + 𝜒2(𝜆𝜒2𝑆𝜆 + 𝐿𝜒1𝐶𝜆)𝑍𝐵 +

𝑍𝐴𝑍𝐵

𝜒1 + 𝜒2
∙ [2𝜒1𝜒2 + (𝜒1

2 + 𝜒1
2)𝐶𝜆 +

𝐿
𝜆

𝜒1𝜒2𝑆𝜆]

(𝜒1 + 𝜒2) ∙ [𝜆(𝜒1 + 𝜒2)𝑆𝜆 + (𝑍𝐴 + 𝑍𝐵)𝐶𝜆 +
𝑍𝐴𝑍𝐵𝑆𝜆

𝜆(𝜒1 + 𝜒2)
]

where Cλ
= cosh(L/λ), Sλ = sinh(L/λ) and λ = [ζ/(χ

1
+χ

2
)]

1/2

.

The major difference between this transmission line and the two before has to do with the calculation of the derivative.

The derivatives of this equation would be algebraically and computationally prohibitive to calculate. Therefore, for this

type of transmission line, we will only calculate the impedance and not the derivatives. This component can only be used

with the simplex method of EIS fitting. To enforce this, LM_Compatible flag is set to false, i.e., no Levenberg-Marquardt

fit is allowed.

The component shown above is implemented in GamryTransmissionLineUtilities and named Unified.

The CalcZ type function, CTranLine, is again a straightforward function call. This time, things are even simpler. We do

not pass anything related to the derivative calculation.

static void CTranLine(bool CalculateDerivatives,

double const Frequency,

double const * const pParam[],

COMPLEX * const pZ,

COMPLEX * const pdZdP[])

{

Unified(Frequency,pParam,pZ,*chi1,*zeta,*chi2,*ZACalc,*ZBCalc);

}

pParam holds the pointers to the input parameters and pZ is the pointer to where the calculated impedance goes. These

are passed through to the utility function. The last five parameters are the function pointers to the calculators for five

subcomponents that are shown in Figure 1c.

As implemented, Unified is defined with χ
1
 = r

1
, ζ = r

3
||q

3
, χ

2
 =r

2
, Z

A
 = R

A
||Q

A
 and Z

B
 = R

B
. In total, Unified has

ten parameters:

static PARAMETER L = {"L","","",false,0.0,true,0.0}; // n=0

static PARAMETER r1 = {"r1","ohm","ohm*cm^2",false,0.0,true,0.0}; // n=1

static PARAMETER r2 = {"r2","ohm","ohm*cm^2",false,0.0,true,0.0}; // n=2

static PARAMETER r3 = {"r3","ohm","ohm*cm^2",false,0.0,true,0.0}; // n=3

static PARAMETER Yo3 = {"Yo3","S*s^a","S*s^a/cm^2",false,0.0,true,0.0}; // n=4

static PARAMETER a3 = {"a3","","",true,1.0,true,0.0}; // n=5

static PARAMETER YoA = {"YoA","S*s^a","S*s^a/cm^2",false,0.0,true,0.0}; // n=6

static PARAMETER RA = {"RA","ohm","ohm*cm^2",false,0.0,true,0.0}; // n=7

static PARAMETER aA = {"aA","","",true,1.0,true,0.0}; // n=8

static PARAMETER RB = {"RB","ohm","ohm*cm^2",false,0.0,true,0.0}; // n=9

The COMPONENT definition using the above parameter definitions is

ComponentLib[3] = {"TranLine",10,CTranLine,

{&L,&r1,&r2,&r3,&Yo3,&a3,&YoB,&RB,&aB,&RA},IDB_TRANLINE,false};

For the implemented definition, the subcomponent calculators are:

static void chi1_res(double const Frequency,

double const * const pParam[],

COMPLEX * pResult)

{

 double Resistance = *pParam[1];

 pResult->Re = Resistance;

 pResult->Im = 0.0;

}

static void chi2_res(double const Frequency,

double const * const pParam[],

COMPLEX * pResult)

{

 double Resistance = *pParam[2];

 pResult->Re = Resistance;

 pResult->Im = 0.0;

}

static void zeta_res_cpe(double const Frequency,

double const * const pParam[],

COMPLEX * pResult)

{

 double R3 = *pParam[3];

 double Yo3 = *pParam[4];

 double a3 = *pParam[5];

 double Omega = 2 * PI * Frequency;

 double denom;

 double term1 = 1.0/R3 + Yo3 * pow(Omega,a3)*cos(a3*PI/2.0);

 double term2 = sin(a3*PI/2.0)*Yo3*pow(Omega,a3);

 denom = pow(term1,2.0)+pow(term2,2.0);

 pResult->Re = term1/denom;

 pResult->Im = -1.0*term2/denom;

}

static void ZACalc_res_cpe(double const Frequency,

double const * const pParam[],

COMPLEX * pResult)

{

 double RA = *pParam[7];

 double YoA = *pParam[6];

 double aA = *pParam[8];

 double Omega = 2 * PI * Frequency;

 double denom;

 double term1 = 1.0/RA + YoA * pow(Omega,aA)*cos(aA*PI/2.0);

 double term2 = (sin(aA*PI/2.0)*YoA*pow(Omega,aA));

 denom = pow(term1,2.0)+pow(term2,2.0);

 pResult->Re = term1/denom;

 pResult->Im = -1*term2/denom;

}

static void ZBCalc_res(double const Frequency,

double const * const pParam[],

COMPLEX * pResult)

{

 double RB = *pParam[9];

 pResult->Re = RB;

 pResult->Im = 0.0;

}

With these five functions above, the CalcZ function CTranline is again very straightforward to implement:

static void CTranLine(bool CalculateDerivatives,

double const Frequency,

double const * const pParam[],

COMPLEX * const pZ,

COMPLEX * const pdZdP[])

{

 ASSERT(CalculateDerivatives==False);

Unified(Frequency,

pParam,

pZ,

*chi1_res,

*zeta_res_cpe,

*chi2_res,

*ZACalc_res_cpe,

*ZBCalc_res);

}

Defining a New Transmission Line

Now that we have the default components explained,

we define a new transmission line. As an example we

use a transmission line where the rails are inductors and

the steps are capacitors as shown in Figure 2.

Reviewing Figure 2, the first step is to define the

parameters and the component itself. We have three

parameters: L, l
rail

 and c
step

. The parameter definitions are

static PARAMETER L = {"L","","",false,0.0,true,0.0};

static PARAMETER lrail = {"lrail","H","H/cm^2",false,0.0,true,0.0};

static PARAMETER cstep = {"cstep","F","F/cm^2",false,0.0,true,0.0};

Now that the parameters are defined, we can define our component using these parameters

{"Tutorial”,3,CTutorial,{&L,&lrail,&cstep},IDB_TUTORIAL,true},

The parameter list is—in order—L, lrail, cstep. Therefore we have P
0
 = L, P

1
 = l

rail
, P

2
 = c

step
. Now we need to

implement the functions to calculate the impedances for the rails and the steps. The mathematics is pretty

straightforward:

𝜒 = 𝑗𝜔𝐿rail and 𝜁 =
−𝑗

𝜔𝐶step

with the derivatives

𝑑𝜒

𝑑𝐿rail
= 𝑗𝜔 and

𝑑𝜁

𝑑𝐶step
=

𝑗

𝜔𝐶step
2

The C code for the subcomponent calculators is:

static void chi_ind(bool CalculateDerivatives,

Figure 2. An example of a transmission line to be

implemented.

 double const Frequency,

 double const * const pParam[],

 COMPLEX * pResult,

 COMPLEX pdResultdP[])

{

double Lrail = *pParam[1]; //<Bookkeeping>

COMPLEX * dResultdlrail = &pdResultdP[1];

double Omega = 2 * PI * Frequency;

 pResult->Re = 0.0; //<Calculation of impedance>

 pResult->Im = Omega * lrail;

 if(!(CalculateDerivatives==0)) //<Calculation of derivatives>

 {

 dResultdlrail->Re = 0.0;

 dResultdlrail->Im = Omega;

 }

}

static void zeta_cap(bool CalculateDerivatives,

 double const Frequency,

 double const * const pParam[],

 COMPLEX * pResult,

 COMPLEX pdResultdP[])

{

double Cstep = *pParam[2]; //<Bookkeeping>

COMPLEX * dResultdCstep = &pdResultdP[2];

double Omega = 2 * PI * Frequency;

 double Temp = 1/(Cstep * Omega);

pResult->Re = 0.0; //<Calculation of impedance>

 pResult->Im = -Temp;

 if(!(CalculateDerivatives==0)) //<Calculation of derivatives>

 {

 dResultdlrail->Re = 0.0;

 dResultdlrail->Im = Temp/Cap;

 }

}

With these, then the CalcZ function CTutorial reads

static void CTutorial(bool CalculateDerivatives,

double const Frequency,

double const * const pParam[],

COMPLEX * const pZ,

COMPLEX * const pdZdP[])

{

 TransmissionCothTLO(CalculateDerivatives,

Frequency,

pParam,

pZ,

pdZdP,

*chi_ind,

*zeta_cap);

}

Summary

Three separate transmission lines are implemented in

the Echem Analyst using generic circuit blocks. As

installed, they are implemented with the circuit blocks

from Figure 1, and they cover a large subset of what is

generally used in the electrochemical literature. There

might be cases, however, where a different block would

be needed in the transmission line. Fortunately, this only

involves changing the calculator for the block and not

the entire transmission line. The way our program is

implemented, you just need to implement the calculator

function for the block and pass it onto the calculator for

the transmission line.

Using this procedure, any transmission line that can be

expressed in terms of one of three forms in Figure 1 can

be implemented and used in the Echem Analyst.

Windows is a registered trademark of Microsoft Corporation.

Application Note Rev. 2.0 4/14/2015 Copyright 1990–2015 Gamry

Instruments, Inc.

734 Louis Drive Warminster PA 18974 Tel. 215 682 9330 Fax 215 682 9331 www.gamry.com info@gamry.com

Peter-Henlein-Str. 20

D-85540 Haar b. München

Telefon 089/45 60 06 70

Telefax 089/45 60 06 80

info@c3-analysentechnik.de

www.c3-analysentechnik.de

C3 PROZESS- UND

ANALYSENTECHNIK GmbH

http://www.gamry.com/

