
           

Implementation of Transmission Lines Using 

Generalized Circuit Blocks 

 

 

Introduction 

Transmission lines are regularly used to model the 

impedance spectra of porous systems. As described in 

our Transmission Lines application note, distributed 

elements can be described using these components. 

Here we will describe the computational aspects of EIS 

modeling using transmission lines. We assume basic 

knowledge of transmission lines as covered in our 

Transmission Lines application note and the information 

covered in the User Defined Components technical 

note.  

In general, we refer to the circuit blocks that make up 

the transmission lines as subcomponents. We use χ
1
, χ2, 

ζ, ZA and ZB to denote the subcomponents themselves 

and their impedances. The symbol “||” indicates a 

parallel combination. 

Three transmission line models shown in Figure 1 are 

available in Gamry’s Echem Analyst software. These 

were developed to model diffusion and recombination 

kinetics by Juan Bisquert. The theory and the 

applications to dye-sensitized solar cells are explained in 

a series of papers
1

. 

As we explain later, the “Bisquert Short” (BTS) and the 

“Bisquert Open” (BTO) components are available for 

use in either the simplex algorithm or Levenberg-

Marquardt algorithm. The “Unified” (UTL) component, 

on the other hand, is only available for the simplex 

algorithm because of complications with calculation of 

the derivative. Therefore we separate our discussion into 

two parts, first covering BTS and BTO, and second 

concerning UTL. Each section starts with the 

mathematical background of the components followed 

by the software implementation. We then explain the 

subcomponent calculators. Following this procedure, 
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any transmission line that can be expressed in one of the 

forms shown in Figure 1 can be defined.  

 

Figure 1. Three transmission-line equivalent-circuit 

elements that are available in Echem Analyst. 

Bisquert Short & Bisquert Open 

Mathematical Considerations 

The equations to calculate the impedance of the 

transmission lines are 

𝑍BTO = √𝜁 ∙ 𝜒 coth (𝐿 ∙ √
𝜒

𝜁
)  

𝑍BTS = √𝜁 ∙ 𝜒 tanh (𝐿 ∙ √
𝜒

𝜁
)  (1) 

 

where χ = χ({P
i
}), ζ = ζ({P

i
}), i = 1,2…n and Z = 

Z({P
i
}), i = 0,1,2…n. 



For any transmission line, P
0
 is always be reserved for L, while P

1
, P

2
,…P

n
 are parameters of the subcomponents. 

 

To be able to use the transmission lines in Levenberg-Marquardt type fits, we also need the derivative of Z with respect to 

each P
i
. ∂Z/∂P

0
 is straightforward, because there is no L-dependence within χ or ζ: 

𝜕𝑍BTO

𝜕𝑃0
= 𝜒 ∙ cosech2 (𝐿 ∙ √

𝜒

𝜁
)  

𝜕𝑍BTS

𝜕𝑃0
= 𝜒 ∙ sech2 (𝐿 ∙ √

𝜒

𝜁
)  (2) 

For i = 1,2,…n, ∂Z/∂P
i
 have to be calculated using the chain rule. For any given i, you can write the full partial derivative 

as: 

𝜕𝑍

𝜕𝑃𝑖
=

𝜕𝑍

𝜕𝜒

𝜕𝜒

𝜕𝑃𝑖
+

𝜕𝑍

𝜕𝜁

𝜕𝜁

𝜕𝑃𝑖
+ ⋯, i = 1,2,…n (3) 

You can calculate ∂Z/∂χ and ∂Z/∂ζ directly from Eq. (1): 

 

𝜕𝑍BTO

𝜕𝜒
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1

2
√

𝜁

𝜒
∙ coth (𝐿 ∙ √

𝜒

𝜁
) +

1

2
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𝜒

𝜁
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1

2
√

𝜒

𝜁
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𝜒

𝜁
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1

2
∙ 𝐿 ∙
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𝜁
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𝜒

𝜁
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𝜕𝑍BTS
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1

2
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𝜒
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𝜒

𝜁
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2
∙ 𝐿 ∙ sech2 (𝐿 ∙ √

𝜒

𝜁
) 
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𝜕𝜁
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1

2
√

𝜒
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𝜒

𝜁
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𝜒

𝜁
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All that remains is calculation of ∂χ/∂P
i
 and ∂ζ/∂P

i
 for substituting into Eq. (3). 

Computational Implementation 

Equations (1), (2), and (4) are independent of the specific forms of χ and ζ. These are implemented in the functions 

TransmissionTanhTLS and TransmissionCothTLO in GamryTransmissionLineUtilities and can be used with any 

subcomponent.  

Definitions of the parameters, the components, and the circuit-block calculators are in the project 

GamryTransmissionLines. This project is put under ..\Extended Components\TransmissionLines
2

 during the installation. 

The calculator functions CBisqTLS and CBisqTLO are simply calls into the utility functions that are described above.  

Specific Implementation for χ ≡ r
m
, ζ ≡ r

k
||q

m
 

By default Bisquert Short and Bisquert Open are defined with χ ≡ r
m
, ζ ≡ r

k
||q

m
. Either component has five parameters (L, 

r
m
, r

k
, y

m
, and a). The PARAMETER definitions of these are:  

static PARAMETER L = {"L","","",false,0.0,true,0.0};    //n=0 

static PARAMETER Rm = {"rm","ohm","ohm*cm^2",false,0.0,true,0.0};  //n=1 

static PARAMETER Rk = {"rk","ohm","ohm*cm^2",false,0.0,true,0.0};  //n=2 

static PARAMETER Ym = {"ym","S*s^a","S*s^a/cm^2",false,0.0,true,0.0}; //n=3 

static PARAMETER a = {"a","","",true,1.0,true,0.0};    //n=4 

The two component definitions using the above parameter definitions are: 

ComponentLib[0]={"BisqTan", 5, CBisqTLS,{&L,&Rm,&Rk,&Ym,&a},IDB_BISQTAN,true}; 

ComponentLib[1]={"BisqCot", 5, CBisqTLO,{&L,&Rm,&Rk,&Ym,&a},IDB_BISQCOT,true}; 
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®
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The first parameter in the list (P
0
) must always be L. The indexing for the rest is P

1
=R

m
, P

2
=R

k
, P

3
=Y

m
, P

4
=a. These indices 

are the positions of these parameters in pParam, and the associated ∂Z/∂P
i
, in pdResultdP respectively. 

These functions, like the CalcZ functions explained in the “User-defined Components” applications note, have three 

parts. The first section, labeled “Bookkeeping,” is not strictly necessary, but it makes the code much more readable and 

tracking of the parameters easier. The second part performs the necessary calculations for the impedance, and the third 

part calculates the derivatives when necessary. 

For a subcomponent with just a resistor, such as χ ≡ r
m
 defined above, this looks like: 

static void chi_res(bool CalculateDerivatives, 

  double const Frequency, 

  double const * const pParam[], 

  COMPLEX * pResult, 

  COMPLEX pdResultdP[]) 

{  

double Rm = *pParam[1];    //<Bookkeeping> 

COMPLEX * dResultdRm = &pdResultdP[1]; 

  

 pResult->Re = Rm;     //<Calculation of impedance> 

 pResult->Im = 0.0; 

 

 if(!(CalculateDerivatives==0))  //<Calculation of derivatives> 

 { 

  dResultdRm->Re = 1.0; 

  dResultdRm->Im = 0.0; 

 } 

} 

In the <Bookkeeping> part we get the parameter R
m
 using the pointer that was passed in with the pParam array position 

1. This is because R
m
 was defined as P

1
 in the COMPONENT definition. Similarly we use the pointer from pdResultdP 

array position 1 for the derivative with respect to R
m
. The parts <Calculation of impedance> and <Calculation of 

derivatives> proceed the same way as any user-defined component.  

For the subcomponent ζ, the math is somewhat more complicated. ζ has a parallel resistance and constant-phase 

element combination (i.e., ζ ≡ r
k
||q

m
),. The impedance is 

𝑍 = {𝑅𝑘
−1 + [

1

(𝑗𝜔)𝑎𝑌𝑚
]

−1

}

−1

 

After expanding and rationalizing, 

𝑍 =

1
𝑅𝑘

+ 𝑌𝑚𝜔𝑎cos (𝑎
𝜋
2) − 𝑗 ∙ 𝑌𝑚𝜔𝑎sin (𝑎

𝜋
2)

[
1

𝑅𝑘
+ 𝑌𝑚𝜔𝑎cos (𝑎

𝜋
2) − 𝑗 ∙ 𝑌𝑚𝜔𝑎sin (𝑎

𝜋
2)]

2

+ [𝑌𝑚𝜔𝑎sin (𝑎
𝜋
2)]

2
 

We leave the derivatives as an exercise to the eager reader. The code then looks like: 

static void zeta_cpe_res(bool CalculateDerivatives, 

double const Frequency, 

double const * const pParam[], 

COMPLEX * pResult, 

COMPLEX pdResultdP[]) 

{ 

 double Rk = *pParam[2];    //<Bookkeeping> 

 double Ym = *pParam[3]; 

 double a = *pParam[4]; 

 COMPLEX * dResultdRk = &pdResultdP[2]; 



 COMPLEX * dResultdYm = &pdResultdP[3]; 

 COMPLEX * dResultda = &pdResultdP[4]; 

 

 COMPLEX Complexdenom,divisor; 

 double denom;  

 

 double Omega = 2 * PI * Frequency;  //<Calculation of impedance> 

 double term1 = 1.0/Rk + Ym * pow(Omega,a)*cos(a*PI/2.0); 

 double term2 = sin(a*PI/2.0)*Yo3*pow(Omega,a); 

 

 denom = pow(term1,2.0)+pow(term2,2.0); 

 

 pResult->Re = term1/denom; 

 pResult->Im = -1.0*term2/denom; 

 

 if(!(CalculateDerivatives==0))  //<Calculation of derivatives> 

 { 

  Complexdenom.Re = pResult->Re*pResult->Re - pResult->Im*pResult->Im; 

  Complexdenom.Im = pResult->Im*pResult->Re + pResult->Re*pResult->Im; 

  dResultdRk->Re = complexdenom.Re/(Rk*Rk); 

  dResultdRk->Im = complexdenom.Im/(Rk*Rk); 

 

  divisor.Re = -1*pow(Omega,a)*cos(PI*a/2); 

  divisor.Im = -1*pow(Omega,a)*sin(PI*a/2); 

  dResultdYm.Re=complexdenom.Re*divisor.Re – complexdenom.Im*divisor.Im; 

  dResultdYm.Im=complexdenom.Im*divisor.Re + complexdenom.Re*divisor.Im; 

 

  divisor.Re = Ym * log(Omega); 

  divisor.Im = Ym * PI/2;  

  dResultda.Re = dResultdYm->Re*divisor.Re – dResultdYm->Im*divisor.Im; 

  dResultda.Im = dResultdYm->Im*divisor.Re + dResultdYm->Re*divisor.Im; 

 

 } 

} 

Using these blocks, then, the CalcZ functions CBisqTLS take the form: 

static void CBisqTLS(bool CalculateDerivatives,  

double const Frequency,  

double const * const pParam[],  

COMPLEX * const pZ,  

COMPLEX * const pdZdP[]) 

{ 

 TransmissionTanhTLS(CalculateDerivatives, 

Frequency,  

pParam, 

pZ, 

pdZdP, 

*chi_res,   // chi calculator defined above 

*zeta_cpe_res);  // zeta calculator defined above 

} 

CBisqTLO operates similarly. 

Unified (UTL) 

As you would expect, the equation governing the impedance of Unified is much more complex: 



𝑧 =
𝐿𝜆𝜒1𝜒2(𝜒1 + 𝜒2)𝑆𝜆 + 𝜒1(𝜆𝜒1𝑆𝜆 + 𝐿𝜒2𝐶𝜆)𝑍𝐴 + 𝜒2(𝜆𝜒2𝑆𝜆 + 𝐿𝜒1𝐶𝜆)𝑍𝐵 +

𝑍𝐴𝑍𝐵

𝜒1 + 𝜒2
∙ [2𝜒1𝜒2 + (𝜒1

2 + 𝜒1
2)𝐶𝜆 +

𝐿
𝜆

𝜒1𝜒2𝑆𝜆]

(𝜒1 + 𝜒2) ∙ [𝜆(𝜒1 + 𝜒2)𝑆𝜆 + (𝑍𝐴 + 𝑍𝐵)𝐶𝜆 +
𝑍𝐴𝑍𝐵𝑆𝜆

𝜆(𝜒1 + 𝜒2)
]

 

where Cλ 
= cosh(L/λ), Sλ = sinh(L/λ) and λ = [ζ/(χ

1
+χ

2
)]

1/2

.  

The major difference between this transmission line and the two before has to do with the calculation of the derivative. 

The derivatives of this equation would be algebraically and computationally prohibitive to calculate. Therefore, for this 

type of transmission line, we will only calculate the impedance and not the derivatives. This component can only be used 

with the simplex method of EIS fitting. To enforce this, LM_Compatible flag is set to false, i.e., no Levenberg-Marquardt 

fit is allowed. 

The component shown above is implemented in GamryTransmissionLineUtilities and named Unified.  

The CalcZ type function, CTranLine, is again a straightforward function call. This time, things are even simpler. We do 

not pass anything related to the derivative calculation. 

static void CTranLine(bool CalculateDerivatives,  

double const Frequency,  

double const * const pParam[],  

COMPLEX * const pZ,  

COMPLEX * const pdZdP[]) 

{ 

Unified(Frequency,pParam,pZ,*chi1,*zeta,*chi2,*ZACalc,*ZBCalc);  

} 

pParam holds the pointers to the input parameters and pZ is the pointer to where the calculated impedance goes. These 

are passed through to the utility function. The last five parameters are the function pointers to the calculators for five 

subcomponents that are shown in Figure 1c. 

As implemented, Unified is defined with χ
1
 = r

1
, ζ = r

3
||q

3
, χ

2
 =r

2
, Z

A
 = R

A
||Q

A
 and Z

B
 = R

B
. In total, Unified has 

ten parameters: 

static PARAMETER L = {"L","","",false,0.0,true,0.0};    // n=0 

static PARAMETER r1 = {"r1","ohm","ohm*cm^2",false,0.0,true,0.0};  // n=1 

static PARAMETER r2 = {"r2","ohm","ohm*cm^2",false,0.0,true,0.0};  // n=2 

static PARAMETER r3 = {"r3","ohm","ohm*cm^2",false,0.0,true,0.0};  // n=3 

static PARAMETER Yo3 = {"Yo3","S*s^a","S*s^a/cm^2",false,0.0,true,0.0}; // n=4 

static PARAMETER a3 = {"a3","","",true,1.0,true,0.0};    // n=5 

static PARAMETER YoA = {"YoA","S*s^a","S*s^a/cm^2",false,0.0,true,0.0}; // n=6 

static PARAMETER RA = {"RA","ohm","ohm*cm^2",false,0.0,true,0.0};  // n=7 

static PARAMETER aA = {"aA","","",true,1.0,true,0.0};    // n=8 

static PARAMETER RB = {"RB","ohm","ohm*cm^2",false,0.0,true,0.0};  // n=9 

The COMPONENT definition using the above parameter definitions is 

ComponentLib[3] = {"TranLine",10,CTranLine, 

{&L,&r1,&r2,&r3,&Yo3,&a3,&YoB,&RB,&aB,&RA},IDB_TRANLINE,false}; 

For the implemented definition, the subcomponent calculators are: 

static void chi1_res(double const Frequency, 

double const * const pParam[], 

COMPLEX * pResult) 

{  

 double Resistance = *pParam[1]; 

 

 pResult->Re = Resistance; 

 pResult->Im = 0.0; 

} 

 



static void chi2_res(double const Frequency, 

double const * const pParam[], 

COMPLEX * pResult) 

{ 

 double Resistance = *pParam[2]; 

 

 pResult->Re = Resistance; 

 pResult->Im = 0.0; 

} 

 

static void zeta_res_cpe(double const Frequency, 

double const * const pParam[], 

COMPLEX * pResult) 

{ 

 double R3 = *pParam[3]; 

 double Yo3 = *pParam[4]; 

 double a3 = *pParam[5]; 

 

 double Omega = 2 * PI * Frequency; 

 double denom;  

 double term1 = 1.0/R3 + Yo3 * pow(Omega,a3)*cos(a3*PI/2.0); 

 double term2 = sin(a3*PI/2.0)*Yo3*pow(Omega,a3); 

 

 denom = pow(term1,2.0)+pow(term2,2.0); 

 

 pResult->Re = term1/denom; 

 pResult->Im = -1.0*term2/denom; 

} 

 

 

static void ZACalc_res_cpe(double const Frequency, 

double const * const pParam[], 

COMPLEX * pResult) 

{ 

 double RA = *pParam[7]; 

 double YoA = *pParam[6]; 

 double aA = *pParam[8]; 

 

 double Omega = 2 * PI * Frequency; 

 double denom; 

 double term1 = 1.0/RA + YoA * pow(Omega,aA)*cos(aA*PI/2.0); 

 double term2 = (sin(aA*PI/2.0)*YoA*pow(Omega,aA)); 

 

 denom = pow(term1,2.0)+pow(term2,2.0); 

 

 pResult->Re = term1/denom; 

 pResult->Im = -1*term2/denom; 

} 

 

static void ZBCalc_res(double const Frequency, 

double const * const pParam[], 

COMPLEX * pResult) 

{ 

 double RB = *pParam[9]; 

 

 pResult->Re = RB; 

 pResult->Im = 0.0; 

} 



With these five functions above, the CalcZ function CTranline is again very straightforward to implement: 

static void CTranLine(bool CalculateDerivatives,  

double const Frequency,  

double const * const pParam[],  

COMPLEX * const pZ,  

COMPLEX * const pdZdP[]) 

{ 

  ASSERT(CalculateDerivatives==False); 

Unified(Frequency, 

pParam, 

pZ, 

*chi1_res, 

*zeta_res_cpe, 

*chi2_res, 

*ZACalc_res_cpe, 

*ZBCalc_res); 

} 

Defining a New Transmission Line 

Now that we have the default components explained, 

we define a new transmission line. As an example we 

use a transmission line where the rails are inductors and 

the steps are capacitors as shown in Figure 2. 

Reviewing Figure 2, the first step is to define the 

parameters and the component itself. We have three 

parameters: L, l
rail

 and c
step

. The parameter definitions are 

 

 

 

 

static PARAMETER L = {"L","","",false,0.0,true,0.0}; 

static PARAMETER lrail = {"lrail","H","H/cm^2",false,0.0,true,0.0}; 

static PARAMETER cstep = {"cstep","F","F/cm^2",false,0.0,true,0.0}; 

Now that the parameters are defined, we can define our component using these parameters 

{"Tutorial”,3,CTutorial,{&L,&lrail,&cstep},IDB_TUTORIAL,true}, 

The parameter list is—in order—L, lrail, cstep. Therefore we have P
0
 = L, P

1
 = l

rail
, P

2
 = c

step
. Now we need to 

implement the functions to calculate the impedances for the rails and the steps. The mathematics is pretty 

straightforward: 

𝜒 = 𝑗𝜔𝐿rail       and       𝜁 =
−𝑗

𝜔𝐶step
 

with the derivatives 

𝑑𝜒

𝑑𝐿rail
= 𝑗𝜔       and       

𝑑𝜁

𝑑𝐶step
=

𝑗

𝜔𝐶step
2  

The C code for the subcomponent calculators is: 

static void chi_ind(bool CalculateDerivatives, 

Figure 2. An example of a transmission line to be 

implemented. 



  double const Frequency, 

  double const * const pParam[], 

  COMPLEX * pResult, 

  COMPLEX pdResultdP[]) 

{  

double Lrail = *pParam[1];   //<Bookkeeping> 

COMPLEX * dResultdlrail = &pdResultdP[1]; 

 

double Omega = 2 * PI * Frequency; 

  

 pResult->Re = 0.0;    //<Calculation of impedance> 

 pResult->Im = Omega * lrail; 

 

 if(!(CalculateDerivatives==0))  //<Calculation of derivatives> 

 { 

  dResultdlrail->Re = 0.0; 

  dResultdlrail->Im = Omega; 

 } 

} 

static void zeta_cap(bool CalculateDerivatives, 

  double const Frequency, 

  double const * const pParam[], 

  COMPLEX * pResult, 

  COMPLEX pdResultdP[]) 

{  

double Cstep = *pParam[2];   //<Bookkeeping> 

COMPLEX * dResultdCstep = &pdResultdP[2]; 

 

double Omega = 2 * PI * Frequency; 

 double Temp = 1/(Cstep * Omega); 

  

pResult->Re = 0.0;    //<Calculation of impedance> 

 pResult->Im = -Temp; 

 

 if(!(CalculateDerivatives==0))  //<Calculation of derivatives> 

 { 

  dResultdlrail->Re = 0.0; 

  dResultdlrail->Im = Temp/Cap; 

 } 

} 

With these, then the CalcZ function CTutorial reads 

static void CTutorial(bool CalculateDerivatives,  

double const Frequency,  

double const * const pParam[],  

COMPLEX * const pZ,  

COMPLEX * const pdZdP[]) 

{ 

 TransmissionCothTLO(CalculateDerivatives, 

Frequency,  

pParam, 

pZ, 

pdZdP, 

*chi_ind, 

*zeta_cap); 

}

 



Summary 

Three separate transmission lines are implemented in 

the Echem Analyst using generic circuit blocks. As 

installed, they are implemented with the circuit blocks 

from Figure 1, and they cover a large subset of what is 

generally used in the electrochemical literature. There 

might be cases, however, where a different block would 

be needed in the transmission line. Fortunately, this only 

involves changing the calculator for the block and not 

the entire transmission line. The way our program is 

implemented, you just need to implement the calculator 

function for the block and pass it onto the calculator for 

the transmission line. 

Using this procedure, any transmission line that can be 

expressed in terms of one of three forms in Figure 1 can 

be implemented and used in the Echem Analyst. 
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